Matrix factorization with binary components
نویسندگان
چکیده
Motivated by an application in computational biology, we consider low-rank matrix factorization with {0, 1}-constraints on one of the factors and optionally convex constraints on the second one. In addition to the non-convexity shared with other matrix factorization schemes, our problem is further complicated by a combinatorial constraint set of size 2m·r, where m is the dimension of the data points and r the rank of the factorization. Despite apparent intractability, we provide − in the line of recent work on non-negative matrix factorization by Arora et al. (2012)− an algorithm that provably recovers the underlying factorization in the exact case with O(mr2r +mnr + rn) operations for n datapoints. To obtain this result, we use theory around the Littlewood-Offord lemma from combinatorics.
منابع مشابه
Riordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملLearning Latent Features with Infinite Non-negative Binary Matrix Tri-factorization
Non-negative Matrix Factorization (NMF) has been widely exploited to learn latent features from data. However, previous NMF models often assume a fixed number of features, say p features, where p is simply searched by experiments. Moreover, it is even difficult to learn binary features, since binary matrix involves more challenging optimization problems. In this paper, we propose a new Bayesian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013